mtls
only.Expand description
Overloadable operators.
Implementing these traits allows you to overload certain operators.
Some of these traits are imported by the prelude, so they are available in
every Rust program. Only operators backed by traits can be overloaded. For
example, the addition operator (+
) can be overloaded through the Add
trait, but since the assignment operator (=
) has no backing trait, there
is no way of overloading its semantics. Additionally, this module does not
provide any mechanism to create new operators. If traitless overloading or
custom operators are required, you should look toward macros to extend
Rust’s syntax.
Implementations of operator traits should be unsurprising in their
respective contexts, keeping in mind their usual meanings and
operator precedence. For example, when implementing Mul
, the operation
should have some resemblance to multiplication (and share expected
properties like associativity).
Note that the &&
and ||
operators are currently not supported for
overloading. Due to their short circuiting nature, they require a different
design from traits for other operators like BitAnd
. Designs for them are
under discussion.
Many of the operators take their operands by value. In non-generic
contexts involving built-in types, this is usually not a problem.
However, using these operators in generic code, requires some
attention if values have to be reused as opposed to letting the operators
consume them. One option is to occasionally use clone
.
Another option is to rely on the types involved providing additional
operator implementations for references. For example, for a user-defined
type T
which is supposed to support addition, it is probably a good
idea to have both T
and &T
implement the traits Add<T>
and
Add<&T>
so that generic code can be written without unnecessary
cloning.
§Examples
This example creates a Point
struct that implements Add
and Sub
,
and then demonstrates adding and subtracting two Point
s.
use std::ops::{Add, Sub};
#[derive(Debug, Copy, Clone, PartialEq)]
struct Point {
x: i32,
y: i32,
}
impl Add for Point {
type Output = Self;
fn add(self, other: Self) -> Self {
Self {x: self.x + other.x, y: self.y + other.y}
}
}
impl Sub for Point {
type Output = Self;
fn sub(self, other: Self) -> Self {
Self {x: self.x - other.x, y: self.y - other.y}
}
}
assert_eq!(Point {x: 3, y: 3}, Point {x: 1, y: 0} + Point {x: 2, y: 3});
assert_eq!(Point {x: -1, y: -3}, Point {x: 1, y: 0} - Point {x: 2, y: 3});
See the documentation for each trait for an example implementation.
The Fn
, FnMut
, and FnOnce
traits are implemented by types that can be
invoked like functions. Note that Fn
takes &self
, FnMut
takes &mut self
and FnOnce
takes self
. These correspond to the three kinds of
methods that can be invoked on an instance: call-by-reference,
call-by-mutable-reference, and call-by-value. The most common use of these
traits is to act as bounds to higher-level functions that take functions or
closures as arguments.
Taking a Fn
as a parameter:
fn call_with_one<F>(func: F) -> usize
where F: Fn(usize) -> usize
{
func(1)
}
let double = |x| x * 2;
assert_eq!(call_with_one(double), 2);
Taking a FnMut
as a parameter:
fn do_twice<F>(mut func: F)
where F: FnMut()
{
func();
func();
}
let mut x: usize = 1;
{
let add_two_to_x = || x += 2;
do_twice(add_two_to_x);
}
assert_eq!(x, 5);
Taking a FnOnce
as a parameter:
fn consume_with_relish<F>(func: F)
where F: FnOnce() -> String
{
// `func` consumes its captured variables, so it cannot be run more
// than once
println!("Consumed: {}", func());
println!("Delicious!");
// Attempting to invoke `func()` again will throw a `use of moved
// value` error for `func`
}
let x = String::from("x");
let consume_and_return_x = move || x;
consume_with_relish(consume_and_return_x);
// `consume_and_return_x` can no longer be invoked at this point
Structs§
- A (half-open) range bounded inclusively below and exclusively above (
start..end
). - A range only bounded inclusively below (
start..
). - An unbounded range (
..
). - A range bounded inclusively below and above (
start..=end
). - A range only bounded exclusively above (
..end
). - A range only bounded inclusively above (
..=end
). - Yeet
Experimental ImplementFromResidual<Yeet<T>>
on your type to enabledo yeet expr
syntax in functions returning your type.
Enums§
- An endpoint of a range of keys.
- Used to tell an operation whether it should exit early or go on as usual.
- Coroutine
State Experimental The result of a coroutine resumption.
Traits§
- The addition operator
+
. - The addition assignment operator
+=
. - The bitwise AND operator
&
. - The bitwise AND assignment operator
&=
. - The bitwise OR operator
|
. - The bitwise OR assignment operator
|=
. - The bitwise XOR operator
^
. - The bitwise XOR assignment operator
^=
. - Used for immutable dereferencing operations, like
*v
. - Used for mutable dereferencing operations, like in
*v = 1;
. - The division operator
/
. - The division assignment operator
/=
. - Custom code within the destructor.
- The version of the call operator that takes an immutable receiver.
- The version of the call operator that takes a mutable receiver.
- The version of the call operator that takes a by-value receiver.
- Used for indexing operations (
container[index]
) in immutable contexts. - Used for indexing operations (
container[index]
) in mutable contexts. - The multiplication operator
*
. - The multiplication assignment operator
*=
. - The unary negation operator
-
. - The unary logical negation operator
!
. RangeBounds
is implemented by Rust’s built-in range types, produced by range syntax like..
,a..
,..b
,..=c
,d..e
, orf..=g
.- The remainder operator
%
. - The remainder assignment operator
%=
. - The left shift operator
<<
. Note that because this trait is implemented for all integer types with multiple right-hand-side types, Rust’s type checker has special handling for_ << _
, setting the result type for integer operations to the type of the left-hand-side operand. This means that thougha << b
anda.shl(b)
are one and the same from an evaluation standpoint, they are different when it comes to type inference. - The left shift assignment operator
<<=
. - The right shift operator
>>
. Note that because this trait is implemented for all integer types with multiple right-hand-side types, Rust’s type checker has special handling for_ >> _
, setting the result type for integer operations to the type of the left-hand-side operand. This means that thougha >> b
anda.shr(b)
are one and the same from an evaluation standpoint, they are different when it comes to type inference. - The right shift assignment operator
>>=
. - The subtraction operator
-
. - The subtraction assignment operator
-=
. - AsyncFn
Experimental An async-aware version of theFn
trait. - Async
FnMut Experimental An async-aware version of theFnMut
trait. - Async
FnOnce Experimental An async-aware version of theFnOnce
trait. - Coerce
Unsized Experimental Trait that indicates that this is a pointer or a wrapper for one, where unsizing can be performed on the pointee. - Coroutine
Experimental The trait implemented by builtin coroutine types. - Deref
Pure Experimental - Dispatch
From Dyn Experimental DispatchFromDyn
is used in the implementation of dyn-compatibility checks (specifically allowing arbitrary self types), to guarantee that a method’s receiver type can be dispatched on. - From
Residual Experimental Used to specify which residuals can be converted into whichcrate::ops::Try
types. - OneSided
Range Experimental OneSidedRange
is implemented for built-in range types that are unbounded on one side. For example,a..
,..b
and..=c
implementOneSidedRange
, but..
,d..e
, andf..=g
do not. - Receiver
Experimental Indicates that a struct can be used as a method receiver. That is, a type can use this type as a type ofself
, like this: - Residual
Experimental Allows retrieving the canonical type implementingTry
that has this type as its residual and allows it to hold anO
as its output. - Try
Experimental The?
operator andtry {}
blocks.