pub trait Div<Rhs = Self> {
type Output;
// Required method
fn div(self, rhs: Rhs) -> Self::Output;
}
mtls
only.Expand description
The division operator /
.
Note that Rhs
is Self
by default, but this is not mandatory.
§Examples
§Div
idable rational numbers
use std::ops::Div;
// By the fundamental theorem of arithmetic, rational numbers in lowest
// terms are unique. So, by keeping `Rational`s in reduced form, we can
// derive `Eq` and `PartialEq`.
#[derive(Debug, Eq, PartialEq)]
struct Rational {
numerator: usize,
denominator: usize,
}
impl Rational {
fn new(numerator: usize, denominator: usize) -> Self {
if denominator == 0 {
panic!("Zero is an invalid denominator!");
}
// Reduce to lowest terms by dividing by the greatest common
// divisor.
let gcd = gcd(numerator, denominator);
Self {
numerator: numerator / gcd,
denominator: denominator / gcd,
}
}
}
impl Div for Rational {
// The division of rational numbers is a closed operation.
type Output = Self;
fn div(self, rhs: Self) -> Self::Output {
if rhs.numerator == 0 {
panic!("Cannot divide by zero-valued `Rational`!");
}
let numerator = self.numerator * rhs.denominator;
let denominator = self.denominator * rhs.numerator;
Self::new(numerator, denominator)
}
}
// Euclid's two-thousand-year-old algorithm for finding the greatest common
// divisor.
fn gcd(x: usize, y: usize) -> usize {
let mut x = x;
let mut y = y;
while y != 0 {
let t = y;
y = x % y;
x = t;
}
x
}
assert_eq!(Rational::new(1, 2), Rational::new(2, 4));
assert_eq!(Rational::new(1, 2) / Rational::new(3, 4),
Rational::new(2, 3));
§Dividing vectors by scalars as in linear algebra
use std::ops::Div;
struct Scalar { value: f32 }
#[derive(Debug, PartialEq)]
struct Vector { value: Vec<f32> }
impl Div<Scalar> for Vector {
type Output = Self;
fn div(self, rhs: Scalar) -> Self::Output {
Self { value: self.value.iter().map(|v| v / rhs.value).collect() }
}
}
let scalar = Scalar { value: 2f32 };
let vector = Vector { value: vec![2f32, 4f32, 6f32] };
assert_eq!(vector / scalar, Vector { value: vec![1f32, 2f32, 3f32] });
Required Associated Types§
Required Methods§
Implementors§
1.0.0 · Source§impl Div for i8
impl Div for i8
This operation rounds towards zero, truncating any fractional part of the exact result.
§Panics
This operation will panic if other == 0
or the division results in overflow.
1.0.0 · Source§impl Div for i16
impl Div for i16
This operation rounds towards zero, truncating any fractional part of the exact result.
§Panics
This operation will panic if other == 0
or the division results in overflow.
1.0.0 · Source§impl Div for i32
impl Div for i32
This operation rounds towards zero, truncating any fractional part of the exact result.
§Panics
This operation will panic if other == 0
or the division results in overflow.
1.0.0 · Source§impl Div for i64
impl Div for i64
This operation rounds towards zero, truncating any fractional part of the exact result.
§Panics
This operation will panic if other == 0
or the division results in overflow.
1.0.0 · Source§impl Div for i128
impl Div for i128
This operation rounds towards zero, truncating any fractional part of the exact result.
§Panics
This operation will panic if other == 0
or the division results in overflow.
1.0.0 · Source§impl Div for isize
impl Div for isize
This operation rounds towards zero, truncating any fractional part of the exact result.
§Panics
This operation will panic if other == 0
or the division results in overflow.
1.0.0 · Source§impl Div for u8
impl Div for u8
This operation rounds towards zero, truncating any fractional part of the exact result.
§Panics
This operation will panic if other == 0
.
1.0.0 · Source§impl Div for u16
impl Div for u16
This operation rounds towards zero, truncating any fractional part of the exact result.
§Panics
This operation will panic if other == 0
.
1.0.0 · Source§impl Div for u32
impl Div for u32
This operation rounds towards zero, truncating any fractional part of the exact result.
§Panics
This operation will panic if other == 0
.
1.0.0 · Source§impl Div for u64
impl Div for u64
This operation rounds towards zero, truncating any fractional part of the exact result.
§Panics
This operation will panic if other == 0
.
1.0.0 · Source§impl Div for u128
impl Div for u128
This operation rounds towards zero, truncating any fractional part of the exact result.
§Panics
This operation will panic if other == 0
.
1.0.0 · Source§impl Div for usize
impl Div for usize
This operation rounds towards zero, truncating any fractional part of the exact result.
§Panics
This operation will panic if other == 0
.
1.74.0 · Source§impl Div for Saturating<i8>
impl Div for Saturating<i8>
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(2i8), Saturating(5i8) / Saturating(2));
assert_eq!(Saturating(i8::MAX), Saturating(i8::MAX) / Saturating(1));
assert_eq!(Saturating(i8::MIN), Saturating(i8::MIN) / Saturating(1));
use std::num::Saturating;
let _ = Saturating(0i8) / Saturating(0);
type Output = Saturating<i8>
1.74.0 · Source§impl Div for Saturating<i16>
impl Div for Saturating<i16>
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(2i16), Saturating(5i16) / Saturating(2));
assert_eq!(Saturating(i16::MAX), Saturating(i16::MAX) / Saturating(1));
assert_eq!(Saturating(i16::MIN), Saturating(i16::MIN) / Saturating(1));
use std::num::Saturating;
let _ = Saturating(0i16) / Saturating(0);
type Output = Saturating<i16>
1.74.0 · Source§impl Div for Saturating<i32>
impl Div for Saturating<i32>
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(2i32), Saturating(5i32) / Saturating(2));
assert_eq!(Saturating(i32::MAX), Saturating(i32::MAX) / Saturating(1));
assert_eq!(Saturating(i32::MIN), Saturating(i32::MIN) / Saturating(1));
use std::num::Saturating;
let _ = Saturating(0i32) / Saturating(0);
type Output = Saturating<i32>
1.74.0 · Source§impl Div for Saturating<i64>
impl Div for Saturating<i64>
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(2i64), Saturating(5i64) / Saturating(2));
assert_eq!(Saturating(i64::MAX), Saturating(i64::MAX) / Saturating(1));
assert_eq!(Saturating(i64::MIN), Saturating(i64::MIN) / Saturating(1));
use std::num::Saturating;
let _ = Saturating(0i64) / Saturating(0);
type Output = Saturating<i64>
1.74.0 · Source§impl Div for Saturating<i128>
impl Div for Saturating<i128>
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(2i128), Saturating(5i128) / Saturating(2));
assert_eq!(Saturating(i128::MAX), Saturating(i128::MAX) / Saturating(1));
assert_eq!(Saturating(i128::MIN), Saturating(i128::MIN) / Saturating(1));
use std::num::Saturating;
let _ = Saturating(0i128) / Saturating(0);
type Output = Saturating<i128>
1.74.0 · Source§impl Div for Saturating<isize>
impl Div for Saturating<isize>
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(2isize), Saturating(5isize) / Saturating(2));
assert_eq!(Saturating(isize::MAX), Saturating(isize::MAX) / Saturating(1));
assert_eq!(Saturating(isize::MIN), Saturating(isize::MIN) / Saturating(1));
use std::num::Saturating;
let _ = Saturating(0isize) / Saturating(0);
type Output = Saturating<isize>
1.74.0 · Source§impl Div for Saturating<u8>
impl Div for Saturating<u8>
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(2u8), Saturating(5u8) / Saturating(2));
assert_eq!(Saturating(u8::MAX), Saturating(u8::MAX) / Saturating(1));
assert_eq!(Saturating(u8::MIN), Saturating(u8::MIN) / Saturating(1));
use std::num::Saturating;
let _ = Saturating(0u8) / Saturating(0);
type Output = Saturating<u8>
1.74.0 · Source§impl Div for Saturating<u16>
impl Div for Saturating<u16>
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(2u16), Saturating(5u16) / Saturating(2));
assert_eq!(Saturating(u16::MAX), Saturating(u16::MAX) / Saturating(1));
assert_eq!(Saturating(u16::MIN), Saturating(u16::MIN) / Saturating(1));
use std::num::Saturating;
let _ = Saturating(0u16) / Saturating(0);
type Output = Saturating<u16>
1.74.0 · Source§impl Div for Saturating<u32>
impl Div for Saturating<u32>
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(2u32), Saturating(5u32) / Saturating(2));
assert_eq!(Saturating(u32::MAX), Saturating(u32::MAX) / Saturating(1));
assert_eq!(Saturating(u32::MIN), Saturating(u32::MIN) / Saturating(1));
use std::num::Saturating;
let _ = Saturating(0u32) / Saturating(0);
type Output = Saturating<u32>
1.74.0 · Source§impl Div for Saturating<u64>
impl Div for Saturating<u64>
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(2u64), Saturating(5u64) / Saturating(2));
assert_eq!(Saturating(u64::MAX), Saturating(u64::MAX) / Saturating(1));
assert_eq!(Saturating(u64::MIN), Saturating(u64::MIN) / Saturating(1));
use std::num::Saturating;
let _ = Saturating(0u64) / Saturating(0);
type Output = Saturating<u64>
1.74.0 · Source§impl Div for Saturating<u128>
impl Div for Saturating<u128>
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(2u128), Saturating(5u128) / Saturating(2));
assert_eq!(Saturating(u128::MAX), Saturating(u128::MAX) / Saturating(1));
assert_eq!(Saturating(u128::MIN), Saturating(u128::MIN) / Saturating(1));
use std::num::Saturating;
let _ = Saturating(0u128) / Saturating(0);
type Output = Saturating<u128>
1.74.0 · Source§impl Div for Saturating<usize>
impl Div for Saturating<usize>
§Examples
Basic usage:
use std::num::Saturating;
assert_eq!(Saturating(2usize), Saturating(5usize) / Saturating(2));
assert_eq!(Saturating(usize::MAX), Saturating(usize::MAX) / Saturating(1));
assert_eq!(Saturating(usize::MIN), Saturating(usize::MIN) / Saturating(1));
use std::num::Saturating;
let _ = Saturating(0usize) / Saturating(0);