rocket/data/transform.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
use std::io;
use std::ops::{Deref, DerefMut};
use std::pin::Pin;
use std::task::{Poll, Context};
use tokio::io::ReadBuf;
/// Chainable, in-place, streaming data transformer.
///
/// [`Transform`] operates on [`TransformBuf`]s similar to how [`AsyncRead`]
/// operats on [`ReadBuf`]. A [`Transform`] sits somewhere in a chain of
/// transforming readers. The head (most upstream part) of the chain is _always_
/// an [`AsyncRead`]: the data source. The tail (all downstream parts) is
/// composed _only_ of other [`Transform`]s:
///
/// ```text
/// downstream --->
/// AsyncRead | Transform | .. | Transform
/// <---- upstream
/// ```
///
/// When the upstream source makes data available, the
/// [`Transform::transform()`] method is called. [`Transform`]s may obtain the
/// subset of the filled section added by an upstream data source with
/// [`TransformBuf::fresh()`]. They may modify this data at will, potentially
/// changing the size of the filled section. For example,
/// [`TransformBuf::spoil()`] "removes" all of the fresh data, and
/// [`TransformBuf::fresh_mut()`] can be used to modify the data in-place.
///
/// Additionally, new data may be added in-place via the traditional approach:
/// write to (or overwrite) the initialized section of the buffer and mark it as
/// filled. All of the remaining filled data will be passed to downstream
/// transforms as "fresh" data. To add data to the end of the (potentially
/// rewritten) stream, the [`Transform::poll_finish()`] method can be
/// implemented.
///
/// [`AsyncRead`]: tokio::io::AsyncRead
pub trait Transform {
/// Called when data is read from the upstream source. For any given fresh
/// data, this method is called only once. [`TransformBuf::fresh()`] is
/// guaranteed to contain at least one byte.
///
/// While this method is not _async_ (it does not return [`Poll`]), it is
/// nevertheless executed in an async context and should respect all such
/// restrictions including not blocking.
fn transform(
self: Pin<&mut Self>,
buf: &mut TransformBuf<'_, '_>,
) -> io::Result<()>;
/// Called when the upstream is finished, that is, it has no more data to
/// fill. At this point, the transform becomes an async reader. This method
/// thus has identical semantics to [`AsyncRead::poll_read()`]. This method
/// may never be called if the upstream does not finish.
///
/// The default implementation returns `Poll::Ready(Ok(()))`.
///
/// [`AsyncRead::poll_read()`]: tokio::io::AsyncRead::poll_read()
fn poll_finish(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &mut ReadBuf<'_>,
) -> Poll<io::Result<()>> {
let (_, _) = (cx, buf);
Poll::Ready(Ok(()))
}
}
/// A buffer of transformable streaming data.
///
/// # Overview
///
/// A byte buffer, similar to a [`ReadBuf`], with a "fresh" dimension. Fresh
/// data is always a subset of the filled data, filled data is always a subset
/// of initialized data, and initialized data is always a subset of the buffer
/// itself. Both the filled and initialized data sections are guaranteed to be
/// at the start of the buffer, but the fresh subset is likely to begin
/// somewhere inside the filled section.
///
/// To visualize this, the diagram below represents a possible state for the
/// byte buffer being tracked. The square `[ ]` brackets represent the complete
/// buffer, while the curly `{ }` represent the named subset.
///
/// ```text
/// [ { !! fresh !! } ]
/// { +++ filled +++ } unfilled ]
/// { ----- initialized ------ } uninitialized ]
/// [ capacity ]
/// ```
///
/// The same buffer represented in its true single dimension is below:
///
/// ```text
/// [ ++!!!!!!!!!!!!!!---------xxxxxxxxxxxxxxxxxxxxxxxx]
/// ```
///
/// * `+`: filled (implies initialized)
/// * `!`: fresh (implies filled)
/// * `-`: unfilled / initialized (implies initialized)
/// * `x`: uninitialized (implies unfilled)
///
/// As with [`ReadBuf`], [`AsyncRead`] readers fill the initialized portion of a
/// [`TransformBuf`] to indicate that data is available. _Filling_ initialized
/// portions of the byte buffers is what increases the size of the _filled_
/// section. Because a [`ReadBuf`] may already be partially filled when a reader
/// adds bytes to it, a mechanism to track where the _newly_ filled portion
/// exists is needed. This is exactly what the "fresh" section tracks.
///
/// [`AsyncRead`]: tokio::io::AsyncRead
pub struct TransformBuf<'a, 'b> {
pub(crate) buf: &'a mut ReadBuf<'b>,
pub(crate) cursor: usize,
}
impl TransformBuf<'_, '_> {
/// Returns a borrow to the fresh data: data filled by the upstream source.
pub fn fresh(&self) -> &[u8] {
&self.filled()[self.cursor..]
}
/// Returns a mutable borrow to the fresh data: data filled by the upstream
/// source.
pub fn fresh_mut(&mut self) -> &mut [u8] {
let cursor = self.cursor;
&mut self.filled_mut()[cursor..]
}
/// Spoils the fresh data by resetting the filled section to its value
/// before any new data was added. As a result, the data will never be seen
/// by any downstream consumer unless it is returned via another mechanism.
pub fn spoil(&mut self) {
let cursor = self.cursor;
self.set_filled(cursor);
}
}
pub struct Inspect(pub(crate) Box<dyn FnMut(&[u8]) + Send + Sync + 'static>);
impl Transform for Inspect {
fn transform(mut self: Pin<&mut Self>, buf: &mut TransformBuf<'_, '_>) -> io::Result<()> {
(self.0)(buf.fresh());
Ok(())
}
}
pub struct InPlaceMap(
pub(crate) Box<dyn FnMut(&mut TransformBuf<'_, '_>) -> io::Result<()> + Send + Sync + 'static>
);
impl Transform for InPlaceMap {
fn transform(mut self: Pin<&mut Self>, buf: &mut TransformBuf<'_, '_>,) -> io::Result<()> {
(self.0)(buf)
}
}
impl<'a, 'b> Deref for TransformBuf<'a, 'b> {
type Target = ReadBuf<'b>;
fn deref(&self) -> &Self::Target {
self.buf
}
}
impl<'a, 'b> DerefMut for TransformBuf<'a, 'b> {
fn deref_mut(&mut self) -> &mut Self::Target {
self.buf
}
}
// TODO: Test chaining various transform combinations:
// * consume | consume
// * add | consume
// * consume | add
// * add | add
// Where `add` is a transformer that adds data to the stream, and `consume` is
// one that removes data.
#[cfg(test)]
#[allow(deprecated)]
mod tests {
use std::hash::SipHasher;
use std::sync::{Arc, atomic::{AtomicU8, AtomicU64, Ordering}};
use parking_lot::Mutex;
use ubyte::ToByteUnit;
use crate::http::Method;
use crate::local::blocking::Client;
use crate::fairing::AdHoc;
use crate::{route, Route, Data, Response, Request};
mod hash_transform {
use std::io::Cursor;
use std::hash::Hasher;
use tokio::io::AsyncRead;
use super::super::*;
pub struct HashTransform<H: Hasher> {
pub(crate) hasher: H,
pub(crate) hash: Option<Cursor<[u8; 8]>>
}
impl<H: Hasher + Unpin> Transform for HashTransform<H> {
fn transform(
mut self: Pin<&mut Self>,
buf: &mut TransformBuf<'_, '_>,
) -> io::Result<()> {
self.hasher.write(buf.fresh());
buf.spoil();
Ok(())
}
fn poll_finish(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &mut ReadBuf<'_>,
) -> Poll<io::Result<()>> {
if self.hash.is_none() {
let hash = self.hasher.finish();
self.hash = Some(Cursor::new(hash.to_be_bytes()));
}
let cursor = self.hash.as_mut().unwrap();
Pin::new(cursor).poll_read(cx, buf)
}
}
impl crate::Data<'_> {
/// Chain an in-place hash [`Transform`] to `self`.
pub fn chain_hash_transform<H: std::hash::Hasher>(&mut self, hasher: H) -> &mut Self
where H: Unpin + Send + Sync + 'static
{
self.chain_transform(HashTransform { hasher, hash: None })
}
}
}
#[test]
fn test_transform_series() {
fn handler<'r>(_: &'r Request<'_>, data: Data<'r>) -> route::BoxFuture<'r> {
Box::pin(async move {
data.open(128.bytes()).stream_to(tokio::io::sink()).await.expect("read ok");
route::Outcome::Success(Response::new())
})
}
let inspect2: Arc<AtomicU8> = Arc::new(AtomicU8::new(0));
let raw_data: Arc<Mutex<Vec<u8>>> = Arc::new(Mutex::new(Vec::new()));
let hash: Arc<AtomicU64> = Arc::new(AtomicU64::new(0));
let rocket = crate::build()
.manage(hash.clone())
.manage(raw_data.clone())
.manage(inspect2.clone())
.mount("/", vec![Route::new(Method::Post, "/", handler)])
.attach(AdHoc::on_request("transforms", |req, data| Box::pin(async {
let hash1 = req.rocket().state::<Arc<AtomicU64>>().cloned().unwrap();
let hash2 = req.rocket().state::<Arc<AtomicU64>>().cloned().unwrap();
let raw_data = req.rocket().state::<Arc<Mutex<Vec<u8>>>>().cloned().unwrap();
let inspect2 = req.rocket().state::<Arc<AtomicU8>>().cloned().unwrap();
data.chain_inspect(move |bytes| { *raw_data.lock() = bytes.to_vec(); })
.chain_hash_transform(SipHasher::new())
.chain_inspect(move |bytes| {
assert_eq!(bytes.len(), 8);
let bytes: [u8; 8] = bytes.try_into().expect("[u8; 8]");
let value = u64::from_be_bytes(bytes);
hash1.store(value, Ordering::Release);
})
.chain_inspect(move |bytes| {
assert_eq!(bytes.len(), 8);
let bytes: [u8; 8] = bytes.try_into().expect("[u8; 8]");
let value = u64::from_be_bytes(bytes);
let prev = hash2.load(Ordering::Acquire);
assert_eq!(prev, value);
inspect2.fetch_add(1, Ordering::Release);
});
})));
// Make sure nothing has happened yet.
assert!(raw_data.lock().is_empty());
assert_eq!(hash.load(Ordering::Acquire), 0);
assert_eq!(inspect2.load(Ordering::Acquire), 0);
// Check that nothing happens if the data isn't read.
let client = Client::debug(rocket).unwrap();
client.get("/").body("Hello, world!").dispatch();
assert!(raw_data.lock().is_empty());
assert_eq!(hash.load(Ordering::Acquire), 0);
assert_eq!(inspect2.load(Ordering::Acquire), 0);
// Check inspect + hash + inspect + inspect.
client.post("/").body("Hello, world!").dispatch();
assert_eq!(raw_data.lock().as_slice(), "Hello, world!".as_bytes());
assert_eq!(hash.load(Ordering::Acquire), 0xae5020d7cf49d14f);
assert_eq!(inspect2.load(Ordering::Acquire), 1);
// Check inspect + hash + inspect + inspect, round 2.
let string = "Rocket, Rocket, where art thee? Oh, tis in the sky, I see!";
client.post("/").body(string).dispatch();
assert_eq!(raw_data.lock().as_slice(), string.as_bytes());
assert_eq!(hash.load(Ordering::Acquire), 0x323f9aa98f907faf);
assert_eq!(inspect2.load(Ordering::Acquire), 2);
}
}