Struct rocket::data::TransformBuf

source ·
pub struct TransformBuf<'a, 'b> { /* private fields */ }
Expand description

A buffer of transformable streaming data.

§Overview

A byte buffer, similar to a ReadBuf, with a “fresh” dimension. Fresh data is always a subset of the filled data, filled data is always a subset of initialized data, and initialized data is always a subset of the buffer itself. Both the filled and initialized data sections are guaranteed to be at the start of the buffer, but the fresh subset is likely to begin somewhere inside the filled section.

To visualize this, the diagram below represents a possible state for the byte buffer being tracked. The square [ ] brackets represent the complete buffer, while the curly { } represent the named subset.

[  { !! fresh !! }                                 ]
{ +++ filled +++ }          unfilled               ]
{ ----- initialized ------ }     uninitialized     ]
[                    capacity                      ]

The same buffer represented in its true single dimension is below:

[ ++!!!!!!!!!!!!!!---------xxxxxxxxxxxxxxxxxxxxxxxx]
  • +: filled (implies initialized)
  • !: fresh (implies filled)
  • -: unfilled / initialized (implies initialized)
  • x: uninitialized (implies unfilled)

As with ReadBuf, AsyncRead readers fill the initialized portion of a TransformBuf to indicate that data is available. Filling initialized portions of the byte buffers is what increases the size of the filled section. Because a ReadBuf may already be partially filled when a reader adds bytes to it, a mechanism to track where the newly filled portion exists is needed. This is exactly what the “fresh” section tracks.

Implementations§

source§

impl TransformBuf<'_, '_>

source

pub fn fresh(&self) -> &[u8]

Returns a borrow to the fresh data: data filled by the upstream source.

source

pub fn fresh_mut(&mut self) -> &mut [u8]

Returns a mutable borrow to the fresh data: data filled by the upstream source.

source

pub fn spoil(&mut self)

Spoils the fresh data by resetting the filled section to its value before any new data was added. As a result, the data will never be seen by any downstream consumer unless it is returned via another mechanism.

Methods from Deref<Target = ReadBuf<'b>>§

source

pub fn capacity(&self) -> usize

Returns the total capacity of the buffer.

source

pub fn filled(&self) -> &[u8]

Returns a shared reference to the filled portion of the buffer.

source

pub fn filled_mut(&mut self) -> &mut [u8]

Returns a mutable reference to the filled portion of the buffer.

source

pub fn take(&mut self, n: usize) -> ReadBuf<'_>

Returns a new ReadBuf comprised of the unfilled section up to n.

source

pub fn initialized(&self) -> &[u8]

Returns a shared reference to the initialized portion of the buffer.

This includes the filled portion.

source

pub fn initialized_mut(&mut self) -> &mut [u8]

Returns a mutable reference to the initialized portion of the buffer.

This includes the filled portion.

source

pub unsafe fn inner_mut(&mut self) -> &mut [MaybeUninit<u8>]

Returns a mutable reference to the entire buffer, without ensuring that it has been fully initialized.

The elements between 0 and self.filled().len() are filled, and those between 0 and self.initialized().len() are initialized (and so can be converted to a &mut [u8]).

The caller of this method must ensure that these invariants are upheld. For example, if the caller initializes some of the uninitialized section of the buffer, it must call assume_init with the number of bytes initialized.

§Safety

The caller must not de-initialize portions of the buffer that have already been initialized. This includes any bytes in the region marked as uninitialized by ReadBuf.

source

pub unsafe fn unfilled_mut(&mut self) -> &mut [MaybeUninit<u8>]

Returns a mutable reference to the unfilled part of the buffer without ensuring that it has been fully initialized.

§Safety

The caller must not de-initialize portions of the buffer that have already been initialized. This includes any bytes in the region marked as uninitialized by ReadBuf.

source

pub fn initialize_unfilled(&mut self) -> &mut [u8]

Returns a mutable reference to the unfilled part of the buffer, ensuring it is fully initialized.

Since ReadBuf tracks the region of the buffer that has been initialized, this is effectively “free” after the first use.

source

pub fn initialize_unfilled_to(&mut self, n: usize) -> &mut [u8]

Returns a mutable reference to the first n bytes of the unfilled part of the buffer, ensuring it is fully initialized.

§Panics

Panics if self.remaining() is less than n.

source

pub fn remaining(&self) -> usize

Returns the number of bytes at the end of the slice that have not yet been filled.

source

pub fn clear(&mut self)

Clears the buffer, resetting the filled region to empty.

The number of initialized bytes is not changed, and the contents of the buffer are not modified.

source

pub fn advance(&mut self, n: usize)

Advances the size of the filled region of the buffer.

The number of initialized bytes is not changed.

§Panics

Panics if the filled region of the buffer would become larger than the initialized region.

source

pub fn set_filled(&mut self, n: usize)

Sets the size of the filled region of the buffer.

The number of initialized bytes is not changed.

Note that this can be used to shrink the filled region of the buffer in addition to growing it (for example, by a AsyncRead implementation that compresses data in-place).

§Panics

Panics if the filled region of the buffer would become larger than the initialized region.

source

pub unsafe fn assume_init(&mut self, n: usize)

Asserts that the first n unfilled bytes of the buffer are initialized.

ReadBuf assumes that bytes are never de-initialized, so this method does nothing when called with fewer bytes than are already known to be initialized.

§Safety

The caller must ensure that n unfilled bytes of the buffer have already been initialized.

source

pub fn put_slice(&mut self, buf: &[u8])

Appends data to the buffer, advancing the written position and possibly also the initialized position.

§Panics

Panics if self.remaining() is less than buf.len().

Trait Implementations§

source§

impl<'a, 'b> Deref for TransformBuf<'a, 'b>

§

type Target = ReadBuf<'b>

The resulting type after dereferencing.
source§

fn deref(&self) -> &Self::Target

Dereferences the value.
source§

impl<'a, 'b> DerefMut for TransformBuf<'a, 'b>

source§

fn deref_mut(&mut self) -> &mut Self::Target

Mutably dereferences the value.

Auto Trait Implementations§

§

impl<'a, 'b> Freeze for TransformBuf<'a, 'b>

§

impl<'a, 'b> RefUnwindSafe for TransformBuf<'a, 'b>

§

impl<'a, 'b> Send for TransformBuf<'a, 'b>

§

impl<'a, 'b> Sync for TransformBuf<'a, 'b>

§

impl<'a, 'b> Unpin for TransformBuf<'a, 'b>

§

impl<'a, 'b> !UnwindSafe for TransformBuf<'a, 'b>

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<'a, T, E> AsTaggedExplicit<'a, E> for T
where T: 'a,

source§

fn explicit(self, class: Class, tag: u32) -> TaggedParser<'a, Explicit, Self, E>

source§

impl<'a, T, E> AsTaggedImplicit<'a, E> for T
where T: 'a,

source§

fn implicit( self, class: Class, constructed: bool, tag: u32 ) -> TaggedParser<'a, Implicit, Self, E>

source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T> Instrument for T

source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> IntoEither for T

source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
source§

impl<T> Paint for T
where T: ?Sized,

source§

fn fg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the foreground set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like red() and green(), which have the same functionality but are pithier.

§Example

Set foreground color to white using fg():

use yansi::{Paint, Color};

painted.fg(Color::White);

Set foreground color to white using white().

use yansi::Paint;

painted.white();
source§

fn primary(&self) -> Painted<&T>

Returns self with the fg() set to Color::Primary.

§Example
println!("{}", value.primary());
source§

fn fixed(&self, color: u8) -> Painted<&T>

Returns self with the fg() set to Color::Fixed.

§Example
println!("{}", value.fixed(color));
source§

fn rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the fg() set to Color::Rgb.

§Example
println!("{}", value.rgb(r, g, b));
source§

fn black(&self) -> Painted<&T>

Returns self with the fg() set to Color::Black.

§Example
println!("{}", value.black());
source§

fn red(&self) -> Painted<&T>

Returns self with the fg() set to Color::Red.

§Example
println!("{}", value.red());
source§

fn green(&self) -> Painted<&T>

Returns self with the fg() set to Color::Green.

§Example
println!("{}", value.green());
source§

fn yellow(&self) -> Painted<&T>

Returns self with the fg() set to Color::Yellow.

§Example
println!("{}", value.yellow());
source§

fn blue(&self) -> Painted<&T>

Returns self with the fg() set to Color::Blue.

§Example
println!("{}", value.blue());
source§

fn magenta(&self) -> Painted<&T>

Returns self with the fg() set to Color::Magenta.

§Example
println!("{}", value.magenta());
source§

fn cyan(&self) -> Painted<&T>

Returns self with the fg() set to Color::Cyan.

§Example
println!("{}", value.cyan());
source§

fn white(&self) -> Painted<&T>

Returns self with the fg() set to Color::White.

§Example
println!("{}", value.white());
source§

fn bright_black(&self) -> Painted<&T>

Returns self with the fg() set to Color::BrightBlack.

§Example
println!("{}", value.bright_black());
source§

fn bright_red(&self) -> Painted<&T>

Returns self with the fg() set to Color::BrightRed.

§Example
println!("{}", value.bright_red());
source§

fn bright_green(&self) -> Painted<&T>

Returns self with the fg() set to Color::BrightGreen.

§Example
println!("{}", value.bright_green());
source§

fn bright_yellow(&self) -> Painted<&T>

Returns self with the fg() set to Color::BrightYellow.

§Example
println!("{}", value.bright_yellow());
source§

fn bright_blue(&self) -> Painted<&T>

Returns self with the fg() set to Color::BrightBlue.

§Example
println!("{}", value.bright_blue());
source§

fn bright_magenta(&self) -> Painted<&T>

Returns self with the fg() set to Color::BrightMagenta.

§Example
println!("{}", value.bright_magenta());
source§

fn bright_cyan(&self) -> Painted<&T>

Returns self with the fg() set to Color::BrightCyan.

§Example
println!("{}", value.bright_cyan());
source§

fn bright_white(&self) -> Painted<&T>

Returns self with the fg() set to Color::BrightWhite.

§Example
println!("{}", value.bright_white());
source§

fn bg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the background set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like on_red() and on_green(), which have the same functionality but are pithier.

§Example

Set background color to red using fg():

use yansi::{Paint, Color};

painted.bg(Color::Red);

Set background color to red using on_red().

use yansi::Paint;

painted.on_red();
source§

fn on_primary(&self) -> Painted<&T>

Returns self with the bg() set to Color::Primary.

§Example
println!("{}", value.on_primary());
source§

fn on_fixed(&self, color: u8) -> Painted<&T>

Returns self with the bg() set to Color::Fixed.

§Example
println!("{}", value.on_fixed(color));
source§

fn on_rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the bg() set to Color::Rgb.

§Example
println!("{}", value.on_rgb(r, g, b));
source§

fn on_black(&self) -> Painted<&T>

Returns self with the bg() set to Color::Black.

§Example
println!("{}", value.on_black());
source§

fn on_red(&self) -> Painted<&T>

Returns self with the bg() set to Color::Red.

§Example
println!("{}", value.on_red());
source§

fn on_green(&self) -> Painted<&T>

Returns self with the bg() set to Color::Green.

§Example
println!("{}", value.on_green());
source§

fn on_yellow(&self) -> Painted<&T>

Returns self with the bg() set to Color::Yellow.

§Example
println!("{}", value.on_yellow());
source§

fn on_blue(&self) -> Painted<&T>

Returns self with the bg() set to Color::Blue.

§Example
println!("{}", value.on_blue());
source§

fn on_magenta(&self) -> Painted<&T>

Returns self with the bg() set to Color::Magenta.

§Example
println!("{}", value.on_magenta());
source§

fn on_cyan(&self) -> Painted<&T>

Returns self with the bg() set to Color::Cyan.

§Example
println!("{}", value.on_cyan());
source§

fn on_white(&self) -> Painted<&T>

Returns self with the bg() set to Color::White.

§Example
println!("{}", value.on_white());
source§

fn on_bright_black(&self) -> Painted<&T>

Returns self with the bg() set to Color::BrightBlack.

§Example
println!("{}", value.on_bright_black());
source§

fn on_bright_red(&self) -> Painted<&T>

Returns self with the bg() set to Color::BrightRed.

§Example
println!("{}", value.on_bright_red());
source§

fn on_bright_green(&self) -> Painted<&T>

Returns self with the bg() set to Color::BrightGreen.

§Example
println!("{}", value.on_bright_green());
source§

fn on_bright_yellow(&self) -> Painted<&T>

Returns self with the bg() set to Color::BrightYellow.

§Example
println!("{}", value.on_bright_yellow());
source§

fn on_bright_blue(&self) -> Painted<&T>

Returns self with the bg() set to Color::BrightBlue.

§Example
println!("{}", value.on_bright_blue());
source§

fn on_bright_magenta(&self) -> Painted<&T>

Returns self with the bg() set to Color::BrightMagenta.

§Example
println!("{}", value.on_bright_magenta());
source§

fn on_bright_cyan(&self) -> Painted<&T>

Returns self with the bg() set to Color::BrightCyan.

§Example
println!("{}", value.on_bright_cyan());
source§

fn on_bright_white(&self) -> Painted<&T>

Returns self with the bg() set to Color::BrightWhite.

§Example
println!("{}", value.on_bright_white());
source§

fn attr(&self, value: Attribute) -> Painted<&T>

Enables the styling Attribute value.

This method should be used rarely. Instead, prefer to use attribute-specific builder methods like bold() and underline(), which have the same functionality but are pithier.

§Example

Make text bold using attr():

use yansi::{Paint, Attribute};

painted.attr(Attribute::Bold);

Make text bold using using bold().

use yansi::Paint;

painted.bold();
source§

fn bold(&self) -> Painted<&T>

Returns self with the attr() set to Attribute::Bold.

§Example
println!("{}", value.bold());
source§

fn dim(&self) -> Painted<&T>

Returns self with the attr() set to Attribute::Dim.

§Example
println!("{}", value.dim());
source§

fn italic(&self) -> Painted<&T>

Returns self with the attr() set to Attribute::Italic.

§Example
println!("{}", value.italic());
source§

fn underline(&self) -> Painted<&T>

Returns self with the attr() set to Attribute::Underline.

§Example
println!("{}", value.underline());

Returns self with the attr() set to Attribute::Blink.

§Example
println!("{}", value.blink());

Returns self with the attr() set to Attribute::RapidBlink.

§Example
println!("{}", value.rapid_blink());
source§

fn invert(&self) -> Painted<&T>

Returns self with the attr() set to Attribute::Invert.

§Example
println!("{}", value.invert());
source§

fn conceal(&self) -> Painted<&T>

Returns self with the attr() set to Attribute::Conceal.

§Example
println!("{}", value.conceal());
source§

fn strike(&self) -> Painted<&T>

Returns self with the attr() set to Attribute::Strike.

§Example
println!("{}", value.strike());
source§

fn quirk(&self, value: Quirk) -> Painted<&T>

Enables the yansi Quirk value.

This method should be used rarely. Instead, prefer to use quirk-specific builder methods like mask() and wrap(), which have the same functionality but are pithier.

§Example

Enable wrapping using .quirk():

use yansi::{Paint, Quirk};

painted.quirk(Quirk::Wrap);

Enable wrapping using wrap().

use yansi::Paint;

painted.wrap();
source§

fn mask(&self) -> Painted<&T>

Returns self with the quirk() set to Quirk::Mask.

§Example
println!("{}", value.mask());
source§

fn wrap(&self) -> Painted<&T>

Returns self with the quirk() set to Quirk::Wrap.

§Example
println!("{}", value.wrap());
source§

fn linger(&self) -> Painted<&T>

Returns self with the quirk() set to Quirk::Linger.

§Example
println!("{}", value.linger());
source§

fn clear(&self) -> Painted<&T>

👎Deprecated since 1.0.1: renamed to resetting() due to conflicts with Vec::clear(). The clear() method will be removed in a future release.

Returns self with the quirk() set to Quirk::Clear.

§Example
println!("{}", value.clear());
source§

fn resetting(&self) -> Painted<&T>

Returns self with the quirk() set to Quirk::Resetting.

§Example
println!("{}", value.resetting());
source§

fn bright(&self) -> Painted<&T>

Returns self with the quirk() set to Quirk::Bright.

§Example
println!("{}", value.bright());
source§

fn on_bright(&self) -> Painted<&T>

Returns self with the quirk() set to Quirk::OnBright.

§Example
println!("{}", value.on_bright());
source§

fn whenever(&self, value: Condition) -> Painted<&T>

Conditionally enable styling based on whether the Condition value applies. Replaces any previous condition.

See the crate level docs for more details.

§Example

Enable styling painted only when both stdout and stderr are TTYs:

use yansi::{Paint, Condition};

painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);
source§

fn new(self) -> Painted<Self>
where Self: Sized,

Create a new Painted with a default Style. Read more
source§

fn paint<S>(&self, style: S) -> Painted<&Self>
where S: Into<Style>,

Apply a style wholesale to self. Any previous style is replaced. Read more
source§

impl<T> Same for T

§

type Output = T

Should always be Self
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<T, U> Upcast<T> for U
where T: UpcastFrom<U>,

source§

fn upcast(self) -> T

source§

impl<T, B> UpcastFrom<Counter<T, B>> for T

source§

fn upcast_from(value: Counter<T, B>) -> T

source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

source§

fn vzip(self) -> V

source§

impl<T> WithSubscriber for T

source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more