1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
use std::fmt;
use std::ops::Deref;
use std::any::type_name;
use ref_cast::RefCast;
use crate::{Phase, Rocket, Ignite, Sentinel};
use crate::request::{self, FromRequest, Request};
use crate::outcome::Outcome;
use crate::http::Status;
/// Request guard to retrieve managed state.
///
/// A reference `&State<T>` type is a request guard which retrieves the managed
/// state managing for some type `T`. A value for the given type must previously
/// have been registered to be managed by Rocket via [`Rocket::manage()`]. The
/// type being managed must be thread safe and sendable across thread
/// boundaries as multiple handlers in multiple threads may be accessing the
/// value at once. In other words, it must implement [`Send`] + [`Sync`] +
/// `'static`.
///
/// # Example
///
/// Imagine you have some configuration struct of the type `MyConfig` that you'd
/// like to initialize at start-up and later access it in several handlers. The
/// following example does just this:
///
/// ```rust,no_run
/// # #[macro_use] extern crate rocket;
/// use rocket::State;
///
/// // In a real application, this would likely be more complex.
/// struct MyConfig {
/// user_val: String
/// }
///
/// #[get("/")]
/// fn index(state: &State<MyConfig>) -> String {
/// format!("The config value is: {}", state.user_val)
/// }
///
/// #[get("/raw")]
/// fn raw_config_value(state: &State<MyConfig>) -> &str {
/// &state.user_val
/// }
///
/// #[launch]
/// fn rocket() -> _ {
/// rocket::build()
/// .mount("/", routes![index, raw_config_value])
/// .manage(MyConfig { user_val: "user input".to_string() })
/// }
/// ```
///
/// # Within Request Guards
///
/// Because `State` is itself a request guard, managed state can be retrieved
/// from another request guard's implementation using either
/// [`Request::guard()`] or [`Rocket::state()`]. In the following code example,
/// the `Item` request guard retrieves `MyConfig` from managed state:
///
/// ```rust
/// use rocket::State;
/// use rocket::request::{self, Request, FromRequest};
/// use rocket::outcome::IntoOutcome;
/// use rocket::http::Status;
///
/// # struct MyConfig { user_val: String };
/// struct Item<'r>(&'r str);
///
/// #[rocket::async_trait]
/// impl<'r> FromRequest<'r> for Item<'r> {
/// type Error = ();
///
/// async fn from_request(request: &'r Request<'_>) -> request::Outcome<Self, ()> {
/// // Using `State` as a request guard. Use `inner()` to get an `'r`.
/// let outcome = request.guard::<&State<MyConfig>>().await
/// .map(|my_config| Item(&my_config.user_val));
///
/// // Or alternatively, using `Rocket::state()`:
/// let outcome = request.rocket().state::<MyConfig>()
/// .map(|my_config| Item(&my_config.user_val))
/// .or_forward(Status::InternalServerError);
///
/// outcome
/// }
/// }
/// ```
///
/// # Testing with `State`
///
/// When unit testing your application, you may find it necessary to manually
/// construct a type of `State` to pass to your functions. To do so, use the
/// [`State::get()`] static method or the `From<&T>` implementation:
///
/// ```rust
/// # #[macro_use] extern crate rocket;
/// use rocket::State;
///
/// struct MyManagedState(usize);
///
/// #[get("/")]
/// fn handler(state: &State<MyManagedState>) -> String {
/// state.0.to_string()
/// }
///
/// let mut rocket = rocket::build().manage(MyManagedState(127));
/// let state = State::get(&rocket).expect("managed `MyManagedState`");
/// assert_eq!(handler(state), "127");
///
/// let managed = MyManagedState(77);
/// assert_eq!(handler(State::from(&managed)), "77");
/// ```
#[repr(transparent)]
#[derive(RefCast, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct State<T: Send + Sync + 'static>(T);
impl<T: Send + Sync + 'static> State<T> {
/// Returns the managed state value in `rocket` for the type `T` if it is
/// being managed by `rocket`. Otherwise, returns `None`.
///
/// # Example
///
/// ```rust
/// use rocket::State;
///
/// #[derive(Debug, PartialEq)]
/// struct Managed(usize);
///
/// #[derive(Debug, PartialEq)]
/// struct Unmanaged(usize);
///
/// let rocket = rocket::build().manage(Managed(7));
///
/// let state: Option<&State<Managed>> = State::get(&rocket);
/// assert_eq!(state.map(|s| s.inner()), Some(&Managed(7)));
///
/// let state: Option<&State<Unmanaged>> = State::get(&rocket);
/// assert_eq!(state, None);
/// ```
#[inline(always)]
pub fn get<P: Phase>(rocket: &Rocket<P>) -> Option<&State<T>> {
rocket.state::<T>().map(State::ref_cast)
}
/// This exists because `State::from()` would otherwise be nothing. But we
/// want `State::from(&foo)` to give us `<&State>::from(&foo)`. Here it is.
#[doc(hidden)]
#[inline(always)]
pub fn from(value: &T) -> &State<T> {
State::ref_cast(value)
}
/// Borrow the inner value.
///
/// Using this method is typically unnecessary as `State` implements
/// [`Deref`] with a [`Deref::Target`] of `T`. This means Rocket will
/// automatically coerce a `State<T>` to an `&T` as required. This method
/// should only be used when a longer lifetime is required.
///
/// # Example
///
/// ```rust
/// use rocket::State;
///
/// #[derive(Clone)]
/// struct MyConfig {
/// user_val: String
/// }
///
/// fn handler1<'r>(config: &State<MyConfig>) -> String {
/// let config = config.inner().clone();
/// config.user_val
/// }
///
/// // Use the `Deref` implementation which coerces implicitly
/// fn handler2(config: &State<MyConfig>) -> String {
/// config.user_val.clone()
/// }
/// ```
#[inline(always)]
pub fn inner(&self) -> &T {
&self.0
}
}
impl<'r, T: Send + Sync + 'static> From<&'r T> for &'r State<T> {
#[inline(always)]
fn from(reference: &'r T) -> Self {
State::ref_cast(reference)
}
}
#[crate::async_trait]
impl<'r, T: Send + Sync + 'static> FromRequest<'r> for &'r State<T> {
type Error = ();
#[inline(always)]
async fn from_request(req: &'r Request<'_>) -> request::Outcome<Self, ()> {
match State::get(req.rocket()) {
Some(state) => Outcome::Success(state),
None => {
error!(type_name = type_name::<T>(),
"retrieving unmanaged state\n\
state must be managed via `rocket.manage()`");
Outcome::Error((Status::InternalServerError, ()))
}
}
}
}
impl<T: Send + Sync + 'static> Sentinel for &State<T> {
fn abort(rocket: &Rocket<Ignite>) -> bool {
if rocket.state::<T>().is_none() {
error!(type_name = type_name::<T>(),
"unmanaged state detected\n\
ensure type is being managed via `rocket.manage()`");
return true;
}
false
}
}
impl<T: Send + Sync + fmt::Display + 'static> fmt::Display for State<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.0.fmt(f)
}
}
impl<T: Send + Sync + 'static> Deref for State<T> {
type Target = T;
#[inline(always)]
fn deref(&self) -> &T {
&self.0
}
}